Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Adv ; 4(20): 4279-4290, 2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36321155

RESUMO

The ability to control the relative density of electronic point defects as well as their energy distribution in semiconductors could afford a systematic modulation of their electronic, optical, and optoelectronic properties. Using a model binary hybrid system Cu2Se-CuInSe2, we have investigated the correlation between phase composition, microstructure, and electronic transport behavior in the synthesized composites. We found that both Cu2Se and CuInSe2 phases coexist at multiple length scales, ranging from sub-ten nanometer to several micrometers, leading to the formation of a hybrid hierarchical microstructure. Astonishingly, the electronic phase diagram of the (1 - x)Cu2Se-(x)CuInSe2 (15% ≤ x ≤ 100%) hierarchical composites remarkably deviates from the trend normally expected for composites between a heavily doped semiconductor (Cu2Se) and a poorly conducting phase (CuInSe2). A sudden 3-fold increase in the electrical conductivity and carrier concentration along with a marginal increase in the carrier mobility is observed for composites at the vicinity of equimolar composition (48% ≤ x ≤ 52%). The carrier concentration increases from ∼1.5 × 1020 cm-3 for the composites with x ≤ 45% to 5.0 × 1020 cm-3 for x = 50%, and remains constant at 4.5 × 1020 cm-3 with x value in the range of 52% < x ≤ 90%, then quickly drops to 8 × 1018 cm-3 for pristine CuInSe2 phase (x = 100%). The atypical electronic behavior was rationalized in the light of the formation of an inter-band (IB) within the band gap, which arises from the hybridization of native electronic point defects from both Cu2Se and CuInSe2 phases in the resulting hierarchical composites. The result points to a new strategy to modulate the electronic structure of semiconductor composites to maximize interaction and coupling between two fundamentally contrasting properties enabling access to electronic hybrid systems with potential applications as interactive and stimuli-responsive multifunctional materials.

2.
J Am Chem Soc ; 144(16): 7402-7413, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35420804

RESUMO

Converting waste heat into useful electricity using solid-state thermoelectrics has a potential for enormous global energy savings. Lead chalcogenides are among the most prominent thermoelectric materials, whose performance decreases with an increase in chalcogen amounts (e.g., PbTe > PbSe > PbS). Herein, we demonstrate the simultaneous optimization of the electrical and thermal transport properties of PbS-based compounds by alloying with GeS. The addition of GeS triggers a complex cascade of beneficial events as follows: Ge2+ substitution in Pb2+ and discordant off-center behavior; formation of Pb5Ge5S12 as stable second-phase inclusions through valence disproportionation of Ge2+ to Ge0 and Ge4+. PbS and Pb5Ge5S12 exhibit good conduction band energy alignment that preserves the high electron mobility; the formation of Pb5Ge5S12 increases the electron carrier concentration by introducing S vacancies. Sb doping as the electron donor produces a large power factor and low lattice thermal conductivity (κlat) of ∼0.61 W m-1 K-1. The highest performance was obtained for the 14% GeS-alloyed samples, which exhibited an increased room-temperature electron mobility of ∼121 cm2 V-1 s-1 for 3 × 1019 cm-3 carrier density and a ZT of 1.32 at 923 K. This is ∼55% greater than the corresponding Sb-doped PbS sample and is one of the highest reported for the n-type PbS system. Moreover, the average ZT (ZTavg) of ∼0.76 from 400 to 923 K is the highest for PbS-based systems.

3.
Nano Lett ; 21(21): 8970-8978, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34676752

RESUMO

We report the observation of an anomalous nonlinear optical response of the prototypical three-dimensional topological insulator bismuth selenide through the process of high-order harmonic generation. We find that the generation efficiency increases as the laser polarization is changed from linear to elliptical, and it becomes maximum for circular polarization. With the aid of a microscopic theory and a detailed analysis of the measured spectra, we reveal that such anomalous enhancement encodes the characteristic topology of the band structure that originates from the interplay of strong spin-orbit coupling and time-reversal symmetry protection. The implications are in ultrafast probing of topological phase transitions, light-field driven dissipationless electronics, and quantum computation.

4.
Adv Mater ; 33(44): e2104908, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34523151

RESUMO

The entanglement of lattice thermal conductivity, electrical conductivity, and Seebeck coefficient complicates the process of optimizing thermoelectric performance in most thermoelectric materials. Semiconductors with ultralow lattice thermal conductivities and high power factors at the same time are scarce but fundamentally interesting and practically important for energy conversion. Herein, an intrinsic p-type semiconductor TlCuSe that has an intrinsically ultralow thermal conductivity (0.25 W m-1 K-1 ), a high power factor (11.6 µW cm-1 K-2 ), and a high figure of merit, ZT (1.9) at 643 K is described. The weak chemical bonds, originating from the filled antibonding orbitals p-d* within the edge-sharing CuSe4 tetrahedra and long TlSe bonds in the PbClF-type structure, in conjunction with the large atomic mass of Tl lead to an ultralow sound velocity. Strong anharmonicity, coming from Tl+ lone-pair electrons, boosts phonon-phonon scattering rates and further suppresses lattice thermal conductivity. The multiband character of the valence band structure contributing to power factor enhancement benefits from the lone-pair electrons of Tl+ as well, which modify the orbital character of the valence bands, and pushes the valence band maximum off the Γ-point, increasing the band degeneracy. The results provide new insight on the rational design of thermoelectric materials.

5.
J Am Chem Soc ; 143(15): 5978-5989, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33847500

RESUMO

Owing to the diversity of composition and excellent transport properties, the ternary I-III-VI2 type diamond-like chalcopyrite compounds are attractive functional semiconductors, including as thermoelectric materials. In this family, CuInTe2 and CuGaTe2 are well investigated and achieve maximum ZT values of ∼1.4 at 950 K and an average ZT of 0.43. However, both compounds have poor electrical conductivity at low temperature, resulting in low ZT below 450 K. In this work, we have greatly improved the thermoelectric performance in the quinary diamondoid compound (Cu0.8Ag0.2)(In0.2Ga0.8)Te2 by understanding and controlling the effects of different constituent elements on the thermoelectric transport properties. Our combined theoretical and experimental effort indicates that Ga in the In site of the lattice decreases the carrier effective mass and improves the electrical conductivity and power factor of Cu0.8Ag0.2In1-xGaxTe2. Furthermore, Ag in the Cu site strongly suppresses the heat transport via the enhanced acoustic phonon-optical phonon coupling effects, leading to the ultralow thermal conductivity of ∼0.49 W m-1 K-1 at 850 K in Cu0.8Ag0.2In0.2Ga0.8Te2. Defect formation energy calculations suggest intrinsic Cu vacancies introduce defect levels that are important to the temperature-dependent hole density and electrical conductivity. Therefore, we introduced extra Cu vacancies to optimize the hole carrier density and improve the power factor of Cu0.8Ag0.2In0.2Ga0.8Te2. As a result, a maximum ZT of ∼1.5 at 850 K and an average ZT of 0.78 in the temperature range of 400-850 K are obtained, which is among the highest in the diamond-like compound family.

6.
Angew Chem Int Ed Engl ; 60(1): 268-273, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-32926532

RESUMO

We present an effective approach to favorably modify the electronic structure of PbSe using Ag doping coupled with SrSe or BaSe alloying. The Ag 4d states make a contribution to in the top of the heavy hole valence band and raise its energy. The Sr and Ba atoms diminish the contribution of Pb 6s2 states and decrease the energy of the light hole valence band. This electronic structure modification increases the density-of-states effective mass, and strongly enhances the thermoelectric performance. Moreover, the Ag-rich nanoscale precipitates, discordant Ag atoms, and Pb/Sr, Pb/Ba point defects in the PbSe matrix work together to reduce the lattice thermal conductivity, resulting a record high average ZTavg of around 0.86 over 400-923 K.

7.
ACS Appl Mater Interfaces ; 12(52): 58018-58027, 2020 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-33320541

RESUMO

Atomic-scale incorporation of CuAlSe2 inclusions within the Cu2Se matrix, achieved through a solid-state transformation of CuSe2 template precursor using elemental Cu and Al, enables a unique temperature-dependent dynamic doping of the Cu2Se matrix. The CuAlSe2 inclusions, due to their ability to accommodate a large fraction of excess metal atoms within their crystal lattice, serve as a "reservoir" for Cu ions diffusing away from the Cu2Se matrix. Such unidirectional diffusion of Cu ions from the Cu2Se matrix to the CuAlSe2 inclusion leads to the formation, near the CuAlSe2/Cu2Se interface, of a high density of Cu-deficient ß-Cu2-δSe nanoparticles within the α-Cu2Se matrix and the formation of Cu-rich Cu1+yAlSe2 nanoparticles with the CuAlSe2 inclusions. This gives rise to a large enhancement in carrier concentration and electrical conductivity at elevated temperatures. Furthermore, the nanostructuring near the CuAlSe2/Cu2Se interface, as well as the extensive atomic disorder in the Cu2Se and CuAlSe2 phases, significantly increases phonon scattering, leading to suppressed lattice thermal conductivity. Consequently, a significant improvement in ZT is observed for selected Cu2Se/CuAlSe2 composites. This work demonstrates the use of in situ-formed interactive secondary phases in a semiconducting matrix as an elegant alternative approach for further improvement of the performance of leading thermoelectric materials.

8.
ACS Appl Mater Interfaces ; 12(40): 44991-44997, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32902948

RESUMO

Designing crystalline solids in which intrinsically and extremely low lattice thermal conductivity mainly arises from their unique bonding nature rather than structure complexity and/or atomic disorder could promote thermal energy manipulation and utilization for applications ranging from thermoelectric energy conversion to thermal barrier coatings. Here, we report an extremely low lattice thermal conductivity of ∼0.34 W m-1 K-1 at 300 K in the new complex sulfosalt MnPb16Sb14S38. We attribute the ultralow lattice thermal conductivity to a synergistic combination of scattering mechanisms involving (1) strong bond anharmonicity in various structural building units, owing to the presence of stereoactive lone-electron-pair (LEP) micelles and (2) phonon scattering at the interfaces between building units of increasing size and complexity. Remarkably, low-temperature heat capacity measurement revealed a Cp value of 0.206 J g-1 K-1 at T > 300 K, which is 22% lower than the Dulong-Petit value (0.274 J g-1 K-1). Further analysis of the Cp data and sound velocity (ν = 1834 m s-1) measurement yielded Debye temperature values of 161 and 187 K, respectively. The resulting Grüneisen parameter, γ = 1.65, further supports strong bond anharmonicity as the dominant mechanism responsible for the observed extremely low lattice thermal conductivity.

9.
J Am Chem Soc ; 142(28): 12524-12535, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32628474

RESUMO

Defect chemistry is critical to designing high performance thermoelectric materials. In SnTe, the naturally large density of cation vacancies results in excessive hole doping and frustrates the ability to control the thermoelectric properties. Yet, recent work also associates the vacancies with suppressed sound velocities and low lattice thermal conductivity, underscoring the need to understand the interplay between alloying, vacancies, and the transport properties of SnTe. Here, we report solid solutions of SnTe with NaSbTe2 and NaBiTe2 (NaSnmSbTem+2 and NaSnmBiTem+2, respectively) and focus on the impact of the ternary alloys on the cation vacancies and thermoelectric properties. We find introduction of NaSbTe2, but not NaBiTe2, into SnTe nearly doubles the natural concentration of Sn vacancies. Furthermore, DFT calculations suggest that both NaSbTe2 and NaBiTe2 facilitate valence band convergence and simultaneously narrow the band gap. These effects improve the power factors but also make the alloys more prone to detrimental bipolar diffusion. Indeed, the performance of NaSnmBiTem+2 is limited by strong bipolar transport and only exhibits modest maximum ZTs ≈ 0.85 at 900 K. In NaSnmSbTem+2 however, the doubled vacancy concentration raises the charge carrier density and suppresses bipolar diffusion, resulting in superior power factors than those of the Bi-containing analogues. Lastly, NaSbTe2 incorporation lowers the sound velocity of SnTe to give glasslike lattice thermal conductivities. Facilitated by the favorable impacts of band convergence, vacancy-augmented hole concentration, and lattice softening, NaSnmSbTem+2 reaches high ZT ≈ 1.2 at 800-900 K and a competitive average ZTavg of 0.7 over 300-873 K. The difference in ZT between two chemically similar compounds underscores the importance of intrinsic defects in engineering high-performance thermoelectrics.

10.
ACS Appl Mater Interfaces ; 12(28): 31601-31611, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32558534

RESUMO

Crystal polymorphism selection during synthesis is extremely challenging. However, promoting the formation of a specific metastable polymorph enables modulation of the functional properties of phase-change materials through alteration of the relative abundance of various polymorphs. Here, we demonstrate the stabilization of the superionic ß-Cu2Se phase under ambient conditions and the direct control over the relative ratio between the α-Cu2Se and ß-Cu2Se polymorphs in (x)CuGaSe2/(1-x)Cu2Se composites using CuGaSe2 nanoseeds. We found that the small lattice mismatch between ß-Cu2Se (cubic) and the ab plane of tetragonal CuGaSe2 nanoseeds promotes the formation of low-energy coherent CuGaSe2/ß-Cu2Se interfaces, leading to preferential stabilization of ß-Cu2Se. Astonishingly, the hierarchical microstructure of the resulting composites enables a remarkable decoupling of charge and heat transport, which is manifested by a breakdown of the Wiedemann-Franz law.

11.
J Am Chem Soc ; 141(40): 16169-16177, 2019 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-31508945

RESUMO

PbTe-based thermoelectric materials are some of the most promising for converting heat into electricity, but their n-type versions still lag in performance the p-type ones. Here, we introduce midgap states and nanoscale precipitates using Ga-doping and GeTe-alloying to considerably improve the performance of n-type PbTe. The GeTe alloying significantly enlarges the energy band gap of PbTe and subsequent Ga doping introduces special midgap states that lead to an increased density of states (DOS) effective mass and enhanced Seebeck coefficients. Moreover, the nucleated Ga2Te3 nanoscale precipitates and off-center discordant Ge atoms in the PbTe matrix cause intense phonon scattering, strongly reducing the thermal conductivity (∼0.65 W m-1 K-1 at 623 K). As a result, a high room-temperature thermoelectric figure of merit ZT ∼ 0.59 and a peak ZTmax of ∼1.47 at 673 K were obtained for the Pb0.98Ga0.02Te-5%GeTe. The ZTavg value that is most relevant for devices is ∼1.27 from 400 to 773 K, the highest recorded value for n-type PbTe.

12.
J Am Chem Soc ; 141(27): 10905-10914, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31203611

RESUMO

Understanding the nature of phonon transport in solids and the underlying mechanism linking lattice dynamics and thermal conductivity is important in many fields, including the development of efficient thermoelectric materials where a low lattice thermal conductivity is required. Herein, we choose the pair of synthetic chalcopyrite CuFeS2 and talnakhite Cu17.6Fe17.6S32 compounds, which possess the same elements and very similar crystal structures but very different phonon transport, as contrasting examples to study the influence of lattice dynamics and chemical bonding on the thermal transport properties. Chemically, talnakhite derives from chalcopyrite by inserting extra Cu and Fe atoms in the chalcopyrite lattice. The CuFeS2 compound has a lattice thermal conductivity of 2.37 W m-1 K-1 at 625 K, while Cu17.6Fe17.6S32 features Cu/Fe disorder and possesses an extremely low lattice thermal conductivity of merely 0.6 W m-1 K-1 at 625 K, approaching the amorphous limit κmin. Low-temperature heat capacity measurements and phonon calculations point to a large anharmonicity and low Debye temperature in Cu17.6Fe17.6S32, originating from weaker chemical bonds. Moreover, Mössbauer spectroscopy suggests that the state of Fe atoms in Cu17.6Fe17.6S32 is partially disordered, which induces the enhanced alloy scattering. All of the above peculiar features, absent in CuFeS2, contribute to the extremely low lattice thermal conductivity of the Cu17.6Fe17.6S32 compound.

13.
Phys Chem Chem Phys ; 21(25): 13569-13577, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-31134973

RESUMO

Recently, copper chalcogenides have attracted great attention due to their potential application for mid- to high-temperature thermoelectric power generation. In this work, we report the thermoelectric properties of Cu2Se compounds with different sample preparation processes and the inclusion of a nanoscale Ag2Se powder synthesized with a unique wet chemistry procedure. The Cu2Se compounds were prepared by solid state reaction (SSR), fast quenching (FQ) and mechanically alloyed with nanostructured Ag2Se (NM) followed by hot pressing. High temperature transport properties were assessed by the Seebeck coefficient, electrical conductivity and thermal conductivity measurements. Structural characterization demonstrates that the nano-Ag2Se included sample is multi-phase with several nanoscale features not seen in the Cu2Se samples prepared in the standard method. As a result, the Cu2Se-NM sample possesses a miniscule thermal conductivity, with values as low as 0.5 W m-1 K-1. Fortunately, the nano-inclusions present in the Cu2Se-NM sample do not significantly disrupt electronic transport, preserving the power factor at a consistently high value over a broad range of temperatures. Consequently, the nano-Ag2Se included sample exhibits large average ZT values and a maximum of 1.85 at 800 K that rivals some of the best thermoelectrics currently available. Here, we present microstructural and transport evidence that the wet chemistry technique implemented in our study enables the optimization of thermoelectric performance in superionic conductor Cu2Se.

14.
J Am Chem Soc ; 141(15): 6403-6412, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30916942

RESUMO

We report that Ga-doped and Ga-In-codoped n-type PbS samples show excellent thermoelectric performance in the intermediate temperature range. First-principles electronic structure calculations reveal that Ga doping can cause Fermi level pinning in PbS by introducing a gap state between the conduction and valence bands. Furthermore, Ga-In codoping introduces an extra conduction band. These added electronic features lead to high electron mobilities up to µH ∼ 630 cm2 V-1 s-1 for n of 1.67 × 1019 cm-3 and significantly enhanced Seebeck coefficients in PbS. Consequently, we obtained a maximum power factor of ∼32 µW cm-1 K-2 at 300 K for Pb0.9875Ga0.0125S, which is the highest reported for PbS-based systems giving a room-temperature figure of merit, ZT, of ∼0.35 and ∼0.82 at 923 K. For the codoped Pb0.9865Ga0.0125In0.001S, the maximum ZT rises to ∼1.0 at 923 K and achieves a record-high average ZT (ZTavg) of ∼0.74 in the temperature range of 400-923 K.

15.
ACS Appl Mater Interfaces ; 11(9): 9197-9204, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30715833

RESUMO

Here we report that CdTe alloying and Sb doping increase the density-of-states effective mass and introduce endotaxial nanostructuring in n-type PbTe, resulting in enhanced thermoelectric performance. A prior theoretical prediction for the presence of resonance states in the conduction band of this system, however, could not be confirmed. An amount of 3 mol % CdTe alloying widens the band gap of PbTe by 50%, leading to enhanced carrier effective mass and Seebeck coefficient. This effect is even more pronounced at high temperatures where the solubility of CdTe increases. At 800 K, when the carrier concentration is the same (4 × 1019 cm-3), the Seebeck coefficient of CdTe-alloyed PbTe is -195 µV K-1, 16% higher than that of the Cd-free control sample (-168 µV K-1). Sb doping considerably increases the electron concentration of Pb0.97Cd0.03Te, giving rise to optimized power factors of ∼17 µW cm-1 K-2 at 800 K. More importantly, Sb induces strained endotaxial nanostructures evenly distributed in the matrix. These Sb-rich nanostructures account for the ∼40% reduction in the lattice thermal conductivity over the whole measured temperature range. As a result, a maximum ZT of 1.2 is attained at 750 K in 0.5 mol % Sb-doped Pb0.97Cd0.03Te alloys.

16.
J Am Chem Soc ; 141(10): 4480-4486, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30779557

RESUMO

We show an example of hierarchically designing electronic bands of PbSe toward excellent thermoelectric performance. We find that alloying 15 mol % PbTe into PbSe causes a negligible change in the light and heavy valence band energy offsets (Δ EV) of PbSe around room temperature; however, with rising temperature it makes Δ EV decrease at a significantly higher rate than in PbSe. In other words, the temperature-induced valence band convergence of PbSe is accelerated by alloying with PbTe. On this basis, applying 3 mol % Cd substitution on the Pb sites of PbSe0.85Te0.15 decreases Δ EV and enhances the Seebeck coefficient at all temperatures. Excess Cd precipitates out as CdSe1- yTe y, whose valence band aligns with that of the p-type Na-doped PbSe0.85Te0.15 matrix. This enables facile charge transport across the matrix/precipitate interfaces and retains the high carrier mobilities. Meanwhile, compared to PbSe the lattice thermal conductivity of PbSe0.85Te0.15 is significantly decreased to its amorphous limit of 0.5 W m-1 K-1. Consequently, a highest peak ZT of 1.7 at 900 K and a record high average ZT of ∼1 (400-900 K) for a PbSe-based system are achieved in the composition Pb0.95Na0.02Cd0.03Se0.85Te0.15, which are ∼70% and ∼50% higher than those of Pb0.98Na0.02Se control sample, respectively.

17.
RSC Adv ; 9(13): 7115-7122, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35519979

RESUMO

Despite the achievable high thermoelectric properties in SnSe single crystals, the poor mechanical properties and the relatively high cost of synthesis restrict the large scale commercial application of SnSe. Herein, we reported that co-doping with Na and Ag effectively improves the thermoelectric properties of polycrystalline SnSe. Temperature-dependent carrier mobility indicates that the grain boundary scattering is the dominant scattering mechanism near room temperature, giving rise to low electrical conductivity for the polycrystalline SnSe in comparison with that of the single crystal. Co-doping with Na and Ag improves the electrical conductivity of polycrystalline SnSe with a maximum value of 90.1 S cm-1 at 323 K in Na0.005Ag0.015Sn0.98Se, and the electrical conductivity of the (Na, Ag) co-doped samples is higher than that of the single doped samples over the whole temperature range (300-773 K). Considering the relatively high Seebeck coefficient of 335 µV K-1 at 673 K and the minimum thermal conductivity of 0.48 W m-1 K-1 at 773 K, Na0.005Ag0.015Sn0.98Se is observed to have the highest PF and ZT among the series of samples, with values of 0.50 mW cm-1 K-2 and 0.81 at 773 K, respectively. Its average PF and ZT are 0.43 mW cm-1 K-2 and 0.37, which is 92% and 68% higher than that of Na0.02Sn0.98Se, 40% and 43% higher than that of Ag0.02Sn0.98Se, and 304% and 277% higher than that of the previously reported SnSe, respectively.

18.
J Am Chem Soc ; 140(51): 18115-18123, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30461275

RESUMO

Thermoelectric generators can convert heat directly into usable electric power but suffer from low efficiencies and high costs, which have hindered wide-scale applications. Accordingly, an important goal in the field of thermoelectricity is to develop new high performance materials that are composed of more earth-abundant elements. The best systems for midtemperature power generation rely on heavily doped PbTe, but the Te in these materials is scarce in the Earth's crust. PbSe is emerging as a less expensive alternative to PbTe, although it displays inferior performance due to a considerably smaller power factor S2σ, where S is the Seebeck coefficient and σ is electrical conductivity. Here, we present a new p-type PbSe system, Pb0.98Na0.02Se- x%HgSe, which yields a very high power factor of ∼20 µW·cm-1·K-2 at 963 K when x = 2, a 15% improvement over the best performing PbSe- x%MSe materials. The enhancement is attributed to a combination of high carrier mobility and the early onset of band convergence in the Hg-alloyed samples (∼550 K), which results in a significant increase in the Seebeck coefficient. Interestingly, we find that the Hg2+ cations sit at an off-centered position within the PbSe lattice, and we dub the displaced Hg atoms "discordant". DFT calculations indicate that this feature plays a role in lowering thermal conductivity, and we believe that this insight may inspire new design criteria for engineering high performance thermoelectric materials. The high power factor combined with a decrease in thermal conductivity gives a high figure of merit ZT of 1.7 at 970 K, the highest value reported for p-type PbSe to date.

19.
Phys Rev Lett ; 121(12): 125901, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30296113

RESUMO

We report channel-resolved measurements of the anharmonic coupling of the coherent A_{1g} phonon in photoexcited bismuth to pairs of high wave vector acoustic phonons. The decay of a coherent phonon can be understood as a parametric resonance process whereby the atomic displacement periodically modulates the frequency of a broad continuum of modes. This coupling drives temporal oscillations in the phonon mean-square displacements at the A_{1g} frequency that are observed across the Brillouin zone by femtosecond x-ray diffuse scattering. We extract anharmonic coupling constants between the A_{1g} and several representative decay channels that are within an order of magnitude of density functional perturbation theory calculations.

20.
Inorg Chem ; 57(12): 7402-7411, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29863367

RESUMO

Single-phase polycrystalline powders of Sr1- xSb xHfSe3 ( x = 0, 0.005, 0.01), a new member of the chalcogenide perovskites, were synthesized using a combination of high temperature solid-state reaction and mechanical alloying approaches. Structural analysis using single-crystal as well as powder X-ray diffraction revealed that the synthesized materials are isostructural with SrZrSe3, crystallizing in the orthorhombic space group Pnma (#62) with lattice parameters a = 8.901(2) Å; b = 3.943(1) Å; c = 14.480(3) Å; and Z = 4 for the x = 0 composition. Thermal conductivity data of SrHfSe3 revealed low values ranging from 0.9 to 1.3 W m-1 K-1 from 300 to 700 K, which is further lowered to 0.77 W m-1 K-1 by doping with 1 mol % Sb for Sr. Electronic property measurements indicate that the compound is quite insulating with an electrical conductivity of 2.9 S/cm at 873 K, which was improved to 6.7 S/cm by 0.5 mol % Sb doping. Thermopower data revealed that SrHfSe3 is a p-type semiconductor with thermopower values reaching a maximum of 287 µV/K at 873 K for the 1.0 mol % Sb sample. The optical band gap of Sr1- xSb xHfSe3 samples, as determined by density functional theory calculations and the diffuse reflectance method, is ∼1.00 eV and increases with Sb concentration to 1.15 eV. Careful analysis of the partial densities of states (PDOS) indicates that the band gap in SrHfSe3 is essentially determined by the Se-4p and Hf-5d orbitals with little to no contribution from Sr atoms. Typically, band edges of p- and d-character are a good indication of potentially strong absorption coefficient due to the high density of states of the localized p and d orbitals. This points to potential application of SrHfSe3 as absorbing layer in photovoltaic devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...